Regular Expression Sub-Matching using Partial Derivatives

Martin Sulzmann
Hochschule Karlsruhe - Technik und Wirtschaft
martin.sulzmann@gmail.com

Kenny Zhuo Ming Lu
Nanyang Polytechnic
luzhuomi@gmail.com

Abstract
Regular expression sub-matching is the problem of finding for each sub-part of a regular expression a matching sub-string. Prior work applies Thompson and Glushkov NFA methods for the construction of the matching automata. We propose the novel use of derivatives and partial derivatives for regular expression sub-matching. Our benchmarking results show that the run-time performance is promising and that our approach can be applied in practice.

Categories and Subject Descriptors
F.1.1 [Computation by Abstract Devices]: Models of Computation—Automata; F.4.3 [Mathematical Logic and Formal Languages]: Formal Languages—Operations on languages

General Terms
Algorithms, Languages, Performance

Keywords
Regular expression, Automata, Matching

1. Introduction
Regular expression matching is the problem of checking if a word matches a regular expression. For example, consider the word $ABAAAC$ comprising of letters A, B and C and the regular expression $(A + AB)(BAA + A)(AC + C)$. Symbol $+$ denotes the choice operator. Concatenation is implicit. It is straightforward to see that $ABAAAC$ matches the regular expression.

Specifically, we are interested in sub-matchings where for each sub-part of a regular expression we seek for a matching sub-word. To refer to sub-parts we are interested in, we annotate our regular expression with distinct variables:

$$(x_1 : (A + AB))(x_2 : (BAA + A))(x_3 : (AC + C))$$

These variables will be bound to the sub-matchings. For example, the first two letters AB of the input word $ABAAAC$ will be bound to x_1, the third letter A to x_2 and the remainder AC to x_3.

Many of the real-world implementations of regular expression (sub)matching are very slow for even simple matching problems. For example, consider the pattern $A^n A^n$ and the input string A^n where A^n stands for repeating the letter A n-times. As reported in [5], Perl shows some exponential behavior for this example because of its back-tracking matching algorithm. However, the running time of the matching algorithm can be linear in the size of the input string if proper automata-based methods are applied.

The works in [5, 12] advocate the use of Thompson NFAs [24]. The NFA non-deterministically searches for possible matchings without having to back-track. Thus, a linear running time can be guaranteed. There are several other NFA constructions which can serve as a basis to build the matching automata. For example, the work in [7] relies on Glushkov NFAs for finding (sub)matchings.

In this work, we propose the novel use of Brzozowski’s regular expression derivatives [3] and Antimirov’s partial derivative NFAs [2] for sub-matching which in our view leads to a particular elegant formalization of regular expression sub-matching. We obtain the proof of correctness of regular expression sub-matching by construction. The further advantage of partial derivatives is that on the average the partial derivative NFA is smaller than the Glushkov NFA. There are no ε-transitions compared to Thompson NFAs. We can thus build a highly efficient implementation in Haskell which is the fastest among all Haskell implementations of regular expression sub-matching we are aware of. Our implementation incorporates many of the extensions found in real world regular expressions and we are competitive compared to state-of-the-art C-based implementations such as RE2 and PCRE.

In summary, we make the following contributions:

- We give a rigorous treatment of regular expression sub-matching (Section 3).
- We extend Brzozowski’s regular expression derivatives [3] and Antimirov’s partial derivative [2] to obtain algorithms which implement POSIX and greedy left-most matching (Sections 4 and 5).
- We give a comparison among Thompson, Glushkov and partial derivatives NFA approaches (Section 5.4).
- We show that our approach can support the many extensions typically found in real world regular expressions (Section 6).
- We have built an optimized implementation of regular expression sub-matching with partial derivatives and provide empirical evidence that our implementation yields competitive performance results (Section 7).

All our implementations, including reference implementations of greedy left-most matching using Thompson and Glushkov NFAs, are available via

http://hackage.haskell.org/package/regex-pderiv

Related work is discussed in Section 8. Section 9 concludes.

2. The Key Ideas
We motivate the key ideas of our regular expression sub-matching approach via some examples. Our starting point are Brzozowski’s derivatives [3] which have recently been rediscovered for matching a word against a regular expression [16].
A word \(w \) matches a regular expression \(r \) if \(w \) is an element of the language described by \(r \), written \(w \in L(r) \). This problem can be elegantly solved via derivatives as follows. The idea is that

\[
lw \in L(r) \iff w \in L(r\backslash \ell)
\]

where \(r\backslash \ell \) is the derivative of \(r \) with respect to \(\ell \). In language terms, \(L(r\backslash \ell) = \{ w \mid lw \in L(r) \} \). Constructively, we obtain \(r\backslash \ell \) from \(r \) by taking away the letter \(\ell \) while traversing the structure of \(r \). We will shortly see examples involving the workings of the derivative operator \(\ell(r) \). To check that word \(l_1 \ldots l_n \) matches regular expression \(r \), we simply build \(r\backslash(l_1\ldots l_n) \) and test if this regular expression accepts the empty string.

Our idea is to transfer derivatives to the pattern sub-matching problem. Patterns \(p \) are regular expressions annotated with pattern variables as shown in the introduction. Variable environments \(\Gamma \) hold the bindings of these pattern variables. The derivative operation in this setting is as follows:

\[
lw \vdash p \sim \Gamma \iff w \vdash p\backslash l \sim \Gamma
\]

Word \(lw \) matches the pattern \(p \) and yields environment \(\Gamma \) if \(w \) matches the pattern derivative of \(p \) with respect to \(\ell \). The construction of pattern derivatives \(p\backslash \ell \) is similar to regular expressions. The crucial difference is that we also take care of sub-matches.

As an example we consider pattern \((x : A + y : AB + z : B)^* \) and the to be matched input \(AB \). To be clear, the pattern’s meaning is \((x : A) + (y : AB) + (z : B)^* \) but we generally avoid parentheses around variable bindings. Next, we show the individual derivative steps where notation \(p_1 \xrightarrow{\ell} p_2 \) denotes that \(p_2 \) is the derivative of \(p_1 \) with respect to \(\ell \). For the first step, we also show the intermediate steps indicated by subscript notation.

For space reasons, we put the concatenated expressions \((x_1[A] : \epsilon + y_1[A] : AB + z_1[A] : B) \) and \((x_2[A] : \epsilon + y_1[A] : AB + z_1[A] : B) \) below each other.

The purpose of the intermediate steps are: (1) We unfold the Kleene star, (2) generate for clarity fresh variables for each iteration and (3) we apply the derivative operation to each subcomponent. The sub-matchings are stored within in the sub-pattern. This saves us from keeping track of an additional variable environment which describes the current match. For example, \(z_1[A] : \phi \) denotes that \(z_1 \) is so far bound to \(A \) and \(\phi \) (the empty regular expression) is the residue of the derivative operation.

We continue with step \(p_1 \xrightarrow{\ell} \) starting with

\[
(x_1[A] : \epsilon + y_1[A] : AB + z_1[A] : B) \quad (x_2[A] : \epsilon + y_1[A] : AB + z_1[A] : B)
\]

In case of concatenated expressions \(p_1 \cdot p_2 \) the derivative operation is applied to the leading expression \(p_1 \). Hence, we find

\[
(x_1[A] : \epsilon + y_1[A] : AB + z_1[A] : B) \\
(x_2[A] : \epsilon + y_1[A] : AB + z_1[A] : B)
\]

For our example, the leading expression \(p_1 \) matches the empty word and therefore the derivative operation is also applicable to \(p_2 \). The individual steps are similar to the steps above, unrolling Kleene star etc. In \(p_1 \), we must replace sub-parts which match the empty word by \(\epsilon \), otherwise, \(\phi \). This is to ensure that any matches involving letter take place “behind” \(p_1 \).

Both cases (1) and (2) are combined via choice.

\[
(x_1[A] : \epsilon + y_1[A] : AB + z_1[A] : B) \\
(x_2[B] : \phi + y_2[B] : \phi + z_2[B] : \epsilon) \\
(x : A + y : AB + z : B)^*
\]

We simplify the final pattern by removing parts which are connected to \(\phi \). The thus simplified pattern is

\[
(y_1[AB] : \epsilon ; (x : A + y : AB + z : B)^*) \\
(x_1[A] + y_1[A] : B[z_2[B] : \epsilon]) (x : A + y : AB + z : B)^*
\]

We can directly read out the sub-matchings and collect them in some variable environments. Of course, we only consider sub-matchings whose residues matches the empty word which applies here to all cases. Hence, the first match is \(\Gamma_1 = \{ y_1 : AB \} \) and the second match is \(\Gamma_2 = \{ x_1 : A, z_2 : B \} \).

To guarantee that there is a unique, unambiguous match, we impose a specific matching policy such as POSIX or greedy left-most as found in Perl. In the above example, the first match is the POSIX match whereas the second match is the greedy left-most match.

As we will see, the first match reported by our derivative matching algorithm is always the POSIX match. Obtaining the greedy left-most match via the derivative matching algorithm is non-trivial because the derivative operation maintains the structure of the pattern whereas the greedy left-most match policy effectively ignores the structure.

To obtain the greedy left-most match, we make use of Antimirov’s partial derivatives [2]. Partial derivatives are related to derivatives like non-deterministic automata (NFAs) are related to deterministic automata (DFAs). Derivatives represent the states of a deterministic automata whereas partial derivatives represent the states of a non-deterministic automata. The partial derivative operation \(\ell \) yields a set of regular expressions partial derivatives. The connection to the derivative operation \(\ell \backslash \) in terms of languages is as follows:

\[
L(r \backslash \ell) = L(r_1 + \ldots + r_n)
\]

One of Antimirov’s important results is that the set of partial derivatives of a regular expression and its descendants is finite. For our running example \((x : A + y : AB + z : B)^* \) we obtain the partial derivatives

\[
p_1 = (x : A + y : AB + z : B)^* \\
p_2 = (y : B, (x : A + y : AB + z : B)^*)
\]

For example,

\[
p_1 \backslash \ell = \{ (x : \epsilon ; (x_2[x : A + y : AB + z : B]^*), (y : B)(x : A + y : AB + z : B)^*)
\]
That is, choice '+*' is broken up into a set. We can further simplify $(x: e)(x: A + y: AB + z: B)^*$ to p_1. Hence, after simplifications $p_1 \setminus A = \{ p_1, (y: B)p_1 \}$.

Partial derivatives p_1 and p_2 are states of an NFA where p_1 is the starting as well as final state. The NFA transitions are given in Figure 1. Each transition carries a specific match. Matches associated to transitions are incremental. For example, in case of $(T3)$ the current input B will be added to the current match binding of z.

The above represents a non-deterministic, finite match automata in style of Laurikari’s NFAs with tagged transitions [12].

Via the partial derivative NFA match automata it is straightforward to compute the greedy left-most match. We follow NFAs, i.e. apply transitions, from left to right in the order as computed by the partial pattern derivative function \(\gamma \cdot p \). Each resulting state is associated with an environment. We label each environment with the corresponding state. The initial state has the empty environment \(\{ \} \). In each transition step, the match function is applied to the environment yielding an updated environment.

For input AB, we find the following derivation steps

\[
\begin{align*}
(T1) & \quad p_1 \xrightarrow{x \to A} p_1 \\
(T2) & \quad p_1 \xrightarrow{y \to A} p_2 \\
(T3) & \quad p_1 \xrightarrow{z \to B} p_1 \\
(T4) & \quad p_2 \xrightarrow{y \to B} p_1
\end{align*}
\]

Figure 1. Transitions for \((x: A + y: AB + z: B)^*\)

To summarize, the derivative operation maintains the pattern structure by for example breaking apart choice. This becomes clear when consider derivative and partial derivative of p_1 w.r.t. A:

\[
p_1 \setminus A = \{ p_1, (y: B)p_1 \}
\]

\[
p_1 \setminus A = (x: A + y: A \cdot B)p_1
\]

Under a greedy matching policy, we try to maximize the left-most match. As can be seen from our example, matching via derivatives still respects the original pattern structure and therefore we obtain the POSIX match. Partial derivatives break apart the original pattern structure. Therefore, we obtain the greedy left-most match as found in Perl.

Next, we formalize this idea.

3. Regular Expression Pattern Sub-Matching

Figure 2 defines the syntax of words, regular expressions, patterns and environments. Σ refers to a finite set of alphabet symbols A, B, etc. To avoid confusion with the EBNF symbol “\(\cdot \)”, we write “\(\cdot \)” to denote the regular expression choice operator. The pattern language consists of variables, pair, choice and star patterns. The treatment of extensions such as character classes, back-references is postponed until the later Section 6. Environments are ordered multi-sets, i.e. lists. We write \(\Gamma \) to denote multi-set union, i.e. list concatenation. The reason for using multi-sets rather than sets is that we record multiple bindings for a variable x. See the upcoming match rule for Kleene star patterns. The reason for using an ordered multi-set is that we will compare the matchings in the order they appear, e.g. from left-to-right.

Concatenation among regular expressions and patterns is often left implicit. That is, we may write the shorter form $r_1 r_2$ instead of (r_1, r_2). To omit parentheses we assume that + has a lower precedence than concatenation. Hence, $A + AB$ is a short-hand for $A + (A, B)$ and $x : A + y : AB$ is a short-hand for $(x : A) + (y : AB)$.

Figure 2. Regular Expressions Syntax and Language

For pattern $(xyz: (x: A + y: AB + z: B)^*)$ and input ABA the following matchings are possible:

- $\{ xyz: ABA, x: A, z: B, x: A \}$.

In the first iteration, we match A (bound by x), then B (bound by z), and then again A (bound by x). For each iteration step we record a binding and therefore treat bindings as lists. We write the bindings in the order as they appear in the pattern, starting with the left-most binding.
(VarBase) \[w \in L(r) \quad w \vdash x : r \leadsto \{ x : w \} \]

(VarGroup) \[w \vdash p \leadsto \Gamma \quad w \vdash x : p \leadsto \{ x : w \} \uplus \Gamma \]

(Pair) \[w_1 \vdash p_1 \leadsto \Gamma_1 \quad w_2 \vdash p_2 \leadsto \Gamma_2 \]

\[w \vdash (p_1, p_2) \leadsto \Gamma_1 \uplus \Gamma_2 \]

(ChoiceL) \[w \vdash p_1 \leadsto \Gamma_1 \quad w \vdash p_1 + p_2 \leadsto \Gamma_1 \]

(ChoiceR) \[w \vdash p_2 \leadsto \Gamma_2 \quad w \vdash p_1 + p_2 \leadsto \Gamma_2 \]

\[w = w_1 \ldots w_n \]

(Star) \[w_i \vdash p \leadsto \Gamma_i \quad \text{for } i = 1, n \]

\[w \vdash p^* \leadsto \Gamma_1 \uplus \ldots \uplus \Gamma_n \]

* \[\{ xyz : ABA, y : AB, x : A \}. *

\[\text{We first match } AB \text{ (bound by } y) \text{ and in the final iteration then } A \text{ (bound } x) \text{.} *

\[\text{For pattern } (xyz : (xy : (x : A + B, y : BAA + A), z : AC + C)) \text{ and input } ABAAC \text{ we find the following matchings:} *

\[\{ xyz : ABAAC, xy : BAA, x : A, y : BAA, z : AC \}. *

\[\{ xyz : ABAAC, xy : ABA, x : AB, y : A, z : AC \}. *

\]

Next, we formalize greedy left-most matching (like in Perl) followed by POSIX matching to obtain a deterministic matching relation.

3.1 Greedy Left-Most Matching

The greedy left-most matching strategy is implemented by Perl and by the PCRE library. We present here a formalization of greedy left-most matching in terms of our notation of patterns and regular expressions.

We start off by establishing some basic definitions. The first definition establishes an ordering relation \(\geq \) among structured words \(w_1 \) and \(w_2 \) which are represented as tuples. For example, we wish that \(AB \geq (AB, B) \) but \(AB \not\geq (AB, B) \). That is, the ordering relation \(\geq \) favors the longest (matching) word, starting from left to right.

Definition 1 (Ordering among Word Tuples). Let \(|w| \) denote the length, i.e. number of symbols, of word \(w \). Then, we inductively define the (partial) ordering among tuples \((w_1, ..., w_n) \) of words as follows:

- \(w_1 \geq w_2 \iff |w_1| \geq |w_2| \)
- \((w_1, ..., w_n) \geq (w'_1, ..., w'_m) \iff \)
 1. \(|w_1| \geq |w'_1| \), or
 2. \(|w_1| = |w'_1| \land n > 1 \land m > 1 \land (w_2, ..., w_n) \geq (w'_2, ..., w'_m)) \)

The ordering relation \(\geq \) will only be applied on tuples \((w_1, ..., w_n) \) and \((w'_1, ..., w'_m) \) where flattening the tuples will either result in the same sequence of letters or one is a prefix of the other.

The next definition extends the ordering relation among structured words to an ordering among environments. We will write \((x_{i_1} : w_{i_1}) \in \Gamma_i \) to refer to each binding in \(\Gamma_i = \{ x_{i_1} : w_{i_1}, ..., x_{i_n} : x_{i_n} \} \).

Definition 2 (Ordering among Environments). Let \((x_{i_1} : w_{i_1}) \in \Gamma_i \) for \(i \in \{ 1, ..., n \} \) and \((x'_j : w'_j) \in \Gamma'_j \) for \(i \in \{ 1, ..., m \} \). The sequence of variables in \(\Gamma_1 \uplus \ldots \uplus \Gamma_n \mid m \) is a prefix of the sequence of variables in \(\Gamma_1 \uplus \ldots \uplus \Gamma_n \). Recall that bindings are ordered multi-sets. Then, \((\Gamma_1, ..., \Gamma_n) \uplus (\Gamma'_1, ..., \Gamma'_m) \) iff \((w'_{i_1}, ..., w'_{i_m}) \geq (w_{i_1}, ..., w_{i_n}) \).

Environments are ordered multi-sets (lists) as well. Hence, the order of \(w_{i_1} \) and \(w'_{i_1} \) is fixed by the order of their corresponding environment variables \(x_{i_j} \).

For comparison, we may only consider selected environment variables. We write \(\Gamma_i \mid V \) to restrict the environment to those variables mentioned in \(V \). That is, \(\Gamma_i \mid V = \{ x : w | x \in \Gamma \mid x \in V \} \). We write \((\Gamma_1 \mid V, ..., \Gamma_n) \mid V \) as a short-hand notation for \((\Gamma_1 \mid V, ..., \Gamma_n) \).

For all pattern variables we record the match in some environment. We compute these variables via function \(baseFv \).

Definition 3 (Free Pattern Variables). The set of free pattern variables is defined as follows:

\[\begin{align*}
fv(x : r) &= \{ x \} \\
fv(x : p) &= \{ x \} \cup \{ x \} \\
fv(p_1, p_2) &= \{ x \} \\
fv(p^*) &= \{ x \} \\
fv(p_1 + p_2) &= \{ x \} \\
fv(p_1 + p_2) &= \{ x \}
\end{align*} \]

The set of free variables belonging to base patterns \(x : r \) is defined as follows:

\[\begin{align*}
baseFv(x : r) &= \{ x \} \\
baseFv(x : p) &= \{ x \} \\
baseFv(p_1, p_2) &= \{ x \} \\
baseFv(p^*) &= \{ x \} \\
baseFv(p_1 + p_2) &= \{ x \} \\
baseFv(p_1 + p_2) &= \{ x \}
\end{align*} \]

We have everything at hand to formalize greedy left-most matching in Figure 4. Judgment \(\vdash^* \leadsto \leadsto \vdash \) performs the matching for all intermediate nodes. The rules strictly favor the left-most match as shown by rules (LM-ChoiceL) and (LM-ChoiceR). In case of (LM-ChoiceR), we append the empty binding \(\Gamma_1 \) ahead of the right match \(\Gamma_2 \). This guarantees that we cover all pattern variables even if they only contribute the empty binding and all bindings reflect the order of the variables in the pattern. This is the basis for the greedy left-most comparison in rules (LM-Star) and (LM).

In case of the Kleene star, we greedily follow the left-most matching policy. See rule (LM-Star). Recall that the bindings in \(\Gamma \) are ordered in the left-to-right matching order.

The top judgment \(\vdash^* \leadsto \leadsto \) and rule (LM) finally select the greedy left-most match. For selection, we must only consider the base bindings resulting from sub-patterns \(x : r \) because of the depth-first left-to-right nature of greedy left-most matching.

For example, \(\{ xyz : ABAAC, xy : ABA, x : AB, y : A, z : AC \} \) is the greedy left-most match for pattern \(\{ xyz : (xy : (x : A + AB, y : BAA + A), z : AC + C) \} \) and input \(ABAAC \).

A subtle point is that this is not strictly enough to ensure that we compute the 'Perl-style' greedy left-most match. The reason is that we do not require to fully annotate a pattern with variables.

For example, consider pattern \((x : (A + AB), y : (B + \epsilon)) \) and input \(AB \) where we find that \(AB \vdash^* (x : (A + AB), y : (B + \epsilon)) \leadsto \{ x : AB, y : \epsilon \} \).
\[
\begin{align*}
\text{(LM-VarBase)} & \quad w \models_{\text{lm}} p \rightsquigarrow \Gamma \\
\end{align*}
\]

\[
\begin{align*}
\text{(LM-VarGroup)} & \quad w \models_{\text{lm}} x : \sigma \rightarrow \{ x : w \} \\
\end{align*}
\]

\[
\begin{align*}
\text{(LM-Pair)} & \quad w \models_{\text{lm}} p \rightsquigarrow \Gamma \\
\end{align*}
\]

\[
\begin{align*}
\text{(LM-ChoiceL)} & \quad w \models_{\text{lm}} (p_1, p_2) \rightsquigarrow \Gamma_1 \cup \Gamma_2 \\
\end{align*}
\]

\[
\begin{align*}
\text{(LM-ChoiceR)} & \quad w \models_{\text{lm}} p_1 + p_2 \rightsquigarrow \Gamma_1 \cup \Gamma_2 \\
\end{align*}
\]

\[
\begin{align*}
\text{(LM-Star)} & \quad w \models_{\text{lm}} \{ p_i \}_{i=1}^n \rightsquigarrow \prod_{i=1}^n \Gamma_i \\
\end{align*}
\]

\[
\begin{align*}
\text{(LM)} & \quad w \models_{\text{lm}} p \rightsquigarrow \Gamma \\
\end{align*}
\]

Figure 4. Greedy Left-Most Matching

This match arises because we do not look further inside the base pattern \(x : (A + AB) \). However, this is not quite the Perl-style match which is \(\{ x : A, y : B \} \).

To obtain the Perl-style match, we must simply fully annotate the pattern with variables:

\[
(x : (x_1 : A + x_2 : AB), y : (y_1 : B + y_2 : \varepsilon))
\]

By fully annotating the pattern we guarantee that the input letter \(A \) is matched against the left-most occurrence of \(A \) in \(A + AB \). Thus, we obtain the desired match \(\{ x : A, x_1 : A, y : B, y_1 : B \} \).

We conclude this section by stating some elementary properties and also consider a few further examples.

Proposition 3.1 (Greedy Left-Most Completeness). Let \(w \) be a word, \(p \) be a pattern and \(\Gamma \) be a binding such that \(w \models_{\text{lm}} p \rightsquigarrow \Gamma \). Then, \(w \models_{\text{lm}} p \rightsquigarrow \Gamma \) for some \(\Gamma' \) such that \(\Gamma(x) = \Gamma'(x) \) for all \(x \in \text{dom}(\Gamma) \).

Proposition 3.2 (Greedy Left-Most Determinism). Let \(w \) be a word, \(p \) be a pattern and \(\Gamma_1, \Gamma_2 \) be two bindings such that \(w \models_{\text{lm}} p \rightsquigarrow \Gamma_1 \) and \(w \models_{\text{lm}} p \rightsquigarrow \Gamma_2 \). Then, \(\Gamma_1 = \Gamma_2 \).

Proposition 3.4 (Greedy Left-Most Associative Stability). Let \(w \) be a word, \(p_1, p_2, p_3 \) be patterns and \(\Gamma \) be a binding such that \(w \models_{\text{lm}} ((p_1, p_2), p_3) \rightsquigarrow \Gamma \) and \(w \models_{\text{lm}} (p_1, (p_2, p_3)) \rightsquigarrow \Gamma. \) Then, we have that \(\Gamma = \Gamma' \).

3.2 POSIX Matching

POSIX matching favors the longest word match \(w_1, \ldots, w_n \) relative to some pattern structure \(p_1, \ldots, p_m \), where each sub-word \(w_i \) matches sub-pattern \(p_i \). We say that \(w_1, \ldots, w_n \) is the maximal (longest) word match if for any other matching sequence \(w'_1, \ldots, w'_n \) we have that \(w_1, \ldots, w_n \) is smaller than \(w'_1, \ldots, w'_n \) w.r.t. the ordering relation \(\geq \) among word tuples. The precise definition follows.

Definition 4 (Maximal Word Match). We say that \(w_1, \ldots, w_n \) is the maximal (word) match w.r.t. patterns \(p_1, \ldots, p_n \) and environment \(\Gamma_1, \ldots, \Gamma_n \) iff
\begin{align*}
\phi \downarrow l &= \phi \\
\epsilon \downarrow l &= \phi \\
L_1 \downarrow l_2 &= \begin{cases}
\epsilon & \text{if } L_1 = \epsilon \cup L_2 \\
\phi & \text{otherwise}
\end{cases} \\
(r_1 + r_2) \downarrow l &= r_1 \downarrow l + r_2 \downarrow l \\
(r_1, r_2) \downarrow l &= \begin{cases}
(r_1 \downarrow l, r_2) & \text{if } \epsilon \in L(r_1) \\
(r_1 \downarrow l, r_2) & \text{otherwise}
\end{cases} \\
r^* \downarrow l &= (r \downarrow l, r^*)
\end{align*}

Figure 6. Regular Expression Derivatives

1. for all \(w_1, \ldots, w_n \) such that
 - \(w_1 \ldots w_n = w_1' \ldots w_n' \), and
 - \(w_i' \vdash p_i \sim \Gamma_i \) for \(i = 1, \ldots, n \), and
2. for all \((w, \Gamma)\) that\(w \vdash p \sim \Gamma \), then there exists \(\Gamma' \) such that \(w \vdash p \sim \Gamma \) or \(\Gamma' \) is deterministic of \(p \) with respect to \(\Gamma \) if and only if \(w \vdash p \sim \Gamma \) and \(\Gamma' \) is deterministic of \(p \) with respect to \(\Gamma \).

Proposition 3.5 (Maximal Word Match Existence and Uniqueness). The maximal word match exists and is unique because the ordering relation among word matches and environment matches is well-founded.

POSIX Matching favors the left-most match which respects the pattern structure. Figure 5 formalizes this requirement. The maximal word match condition in rule (POSIX-Pair) ensures that the first pattern \(p_1 \) is matched by the longest sub-part of \(w \). Similarly, rule (POSIX-Star) demands that in each iteration we match the longest sub-word. For each iteration we record the binding and therefore use multi-sets, i.e. lists.

We state some elementary properties about POSIX matching. The first property states that if there is a match there is also a POSIX match.

Proposition 3.6 (POSIX Completeness). Let \(w \) be a word, \(p \) be a pattern and \(\Gamma \) a binding such that \(w \vdash p \sim \Gamma \). Then, there exists \(\Gamma' \) such that \(w \vdash p \sim \Gamma \).

Determinism of POSIX matching follows from the fact that the maximal match is unique and we favor the left-match in case of choice patterns.

Proposition 3.7 (POSIX Determinism). Let \(w \) be a word, \(p \) be a pattern and \(\Gamma_1 \) and \(\Gamma_2 \) be two bindings such that \(w \vdash p \sim \Gamma_1 \) and \(w \vdash p \sim \Gamma_2 \). Then, \(\Gamma_1 \sim \Gamma_2 \).

A straightforward induction shows that every POSIX match is still a valid match w.r.t. the earlier indeterministic matching relation in Figure 3.

Proposition 3.8 (POSIX Correctness). Let \(w \) be a word, \(p \) be a pattern and \(\Gamma \) a binding such that \(w \vdash p \sim \Gamma \). Then, \(w \vdash p \sim \Gamma \).

Unlike greedy left-most, POSIX matching is not stable under associativity of concatenation. For example, \((x : A, y : BAA, z : C) \) is the POSIX match for pattern \((x : A + AB, y : BAA + A), z : AC+C)\) and input \(ABACAC\). For pattern \((x : A+AB, y : BAA + A), z : AC+C)\), we find the different POSIX match \((x : AB, y : A, z : AC)\).

4. Derivatives for Sub-Matching

We formalize the derivatives matching algorithm motivated in Section 2. Figure 6 summarizes all cases for building regular expression derivatives. For example, \(l' \downarrow = \epsilon \) and \((r_1 + r_2) \downarrow l = r_1 \downarrow l + r_2 \downarrow l \). The pair case checks if the first component \(r_1 \) is empty or not. If empty, the letter \(l \) can be taken away from either \(r_1 \) or \(r_2 \). If non-empty, we take away \(l \) from \(r_1 \). In case of the Kleene star, we unfold \(r^* \) to \((r, r^*)\) and take away the leading \(l \) from \(r \).

\begin{align*}
env(\cdot) &::= p \rightarrow \{ \Gamma \} \\
env(x \downarrow w : r) &= \begin{cases}
\{ \{(x, w)\} \} & \text{if } \epsilon \in L(r) \\
\{ \} & \text{otherwise}
\end{cases} \\
env(x \downarrow w : p) &= \begin{cases}
\{(x, w)\} & \text{if } \epsilon \in L(p) \\
\{\} & \text{otherwise}
\end{cases} \\
env(p_1 + p_2) &= env(p_1) \uplus env(p_2) \\
env(p^*) &= env(p) \\
match(\cdot, \cdot) &::= p \rightarrow \{ \Gamma \} \\
match(p, w) &= env(p \downarrow w)
\end{align*}

Figure 7. Pattern Derivatives

Figure 8. Derivative Matching

Figure 7 formalizes the construction of pattern derivatives \(p \downarrow l \). In case of a pattern variable, we build the derivative of the regular expression (base variable) or inner pattern (group variable). The match is recorded in the pattern itself by appending \(l \) to the already matched word \(w \). The pattern syntax in case of variables is therefore slightly extended. The cases for choice and star are similar to the regular expression case. The pattern match for star records the binding for each iteration.

The pair case differs compared to the regular expression case. The \(\cdot \downarrow \) helper function extracts the regular expression to test if the first pattern \(p_1 \) is empty. If empty, all further matchings will only consider \(p_2 \). However, we can’t simply drop \(p_1 \) because we record the variable binding in the pattern itself. Instead, we make the pattern empty such that the resulting pattern can’t match any further input. See helper function \(\cdot \downarrow \).
Figure 9. Pattern Simplifications

Figure 9 formalizes the simplifications for the pattern case. (S1) and (S2) remove failed matches. (S3) favors the left-most match. These simplifications should be applied after each derivative step. For our running example, we obtain then the following derivation.

\[
\begin{align*}
\phi \to & (x:A^*, y: A^*) \\
\to & (x:A^*, y: A^*) + (x:A^*, y: A^*) \\
\to & ((x:A^*, y: A^*) + (x:A^*, y: A^*) + (x:A^*, y: A^*) \\
\to & ...
\end{align*}
\]

Thus, we achieve a reasonable performance. However, in our experience the partial derivative matching approach appears to be superior in terms of performance. In general, it is more effective to build a (partial derivative) automata whose size is per construction at most linear in the size of the regular expression pattern, instead of constructing a potentially exponentially large (derivative) automata which needs to be simplified. Hence, we will take a closer look at the partial derivative approach next.

5. Partial Derivatives for Sub-Matching

Our goal is to construct a NFA match automata as outlined in Section 2. The states of the NFA are pattern partial derivatives.

5.1 Partial Derivatives

First, we repeat the definition of regular expression partial derivatives in Figure 10. Operator \(\setminus \cdot \) computes partial derivatives and is similar to the derivative \(\cdot \) operator. The crucial difference is that we now put sub-results into a set instead of combining them via the choice operator +.

For expression \(A^* \) we find

\(A^* \setminus \cdot \{ (\epsilon, A^*) \} \equiv_{simplification} \{ A^* \} \)

For brevity, we omit some obvious simplifications, e.g. \((\epsilon, A^*) \rightarrow A^* \), to reduce the number of partial derivatives. We can restate the following result already reported in [2].

Proposition 5.1 (Antimirov). For a finite alphabet \(\Sigma \) and regular expression \(r \), the set of partial derivatives of \(r \) and its descendants is finite. The size of the set is linear in the size of the regular expression.

The construction of pattern partial derivatives follows closely the construction of regular expression partial derivatives. Instead of recording the pattern match in the pattern itself as in the derivative case, we associate a pattern matching function \(f \) to each partial derivative. Figure 11 contains the details.

In case of \(x : r \), we compute the partial derivatives \(r' \) of the base regular expression \(r \). The resulting set consists of elements \((x : r', x \mapsto l) \) where \(r \mapsto l \) records that letter \(l \) is consumed by some pattern variable \(x \). In case of a variable group pattern, we compose the matching of \(f \) of the partial derivatives of the underlying pattern \(p \) with the outer group match \(x \mapsto l \).
The cases for choice and concatenation are straightforward. In case of the Kleene star, the purpose of \texttt{iterate}_{fs(p)} is to keep track of the number of iterations in case of a star pattern. Thus, we can customize the matcher to keep all matchings concerning \texttt{fs}(p) or keep only the last match (which is the typical case). For example, consider pattern \((x : AB + C)^*\), and input \(ABCAB\). If \texttt{iterate}_{fs(p)} is customized to keep the last match, then we obtain \(\{x : AB\}\). If \texttt{iterate}_{fs(p)} accumulates the individual matchings then the result will be \(\{x : AB, x : C, x : AB\}\).

Definition 5 (Star Pattern All Matchings). We follow the star pattern all matchings policy if \texttt{iterate}_{fs(p)} accumulates all matchings of each individual iteration step.

Definition 6 (Star Pattern Last Match). We follow the star pattern last match policy if \texttt{iterate}_{fs(p)} removes the bindings for all variables in \texttt{fs}(p) besides the last, i.e., current, match.

Antimirov’s result straightforwardly transfers to the regular expression pattern setting.

Proposition 5.2 (Finiteness of Pattern Partial Derivatives). For a finite alphabet \(\Sigma = \{1, \ldots, n\}\) and pattern \(p\), the set \(P\) of pattern partial derivatives of \(p\) and its descendants computed via \(\setminus_p\), is finite. The set \(P\) can be described as the least fix point of the following equation

\[P(p) = \{q | \text{(q, f) \in p|p|1\ldots l_n} \cup \{(q, f) \in \mathcal{P}(p), q' \in q|p|1\ldots l_n\}\}
\]

where \(q|p|1\ldots l_n = q|p|1 \cup \ldots \cup q|p|l_n\). The size of the set \(P(p)\) is linear in the size of the pattern.

We consider construction of partial derivatives for our earlier example \((x : A + y : AB + z : B)^*\). We start with \(p_1 = (x : A + y : AB + z : B)^*\). Next, we have

\[
p_1\setminus_p A = \{(x : e)p_1, x \mapsto A\}, \{y : B)p_1, y \mapsto A\}\}
\]

Like in the regular expression case, we apply some simplifications. The remaining calculations are as follows.

\[
p_1\setminus_p B = \{(z : e)p_2, z \mapsto B\}
\]

simplification

\[
\{p_1, z \mapsto B\}
\]

\[
p_2\setminus_p A = \{\}
\]

\[
p_2\setminus_p B = \{\{y : e)p_3, y \mapsto B\}\}
\]

simplification

\[
\{p_1, y \mapsto B\}
\]

We have reached a fix point.

5.2 NFA Match Automata

The above result allows us to build a non-deterministic, finite match automata in style of Laurikari’s NFAs with tagged transitions [12].

Definition 7 (NFA Match Automata). We define the NFA match automata for pattern \(p\) as follows. Pattern \(p\) is the initial state. The set of final states equals

\[\{q \in \mathcal{P}(p), \epsilon \in L(q, l)\}\]

That is, \(q\) is a pattern if its underlying regular expression contains the empty word.

The NFA transitions result from the pattern partial derivative operation as follows. For each \((p', f) \in (p|p|l)\), we introduce a transition

\[p \xrightarrow{(l, f)} p'\]

We use a Mealy automata where the letter \(l\) is the triggering condition and the match function \(f\) is the output function applied to the match environment.

For our running example \((x : A + y : AB + z : B)^*\), the NFAs transitions are shown in Figure 11.

5.3 Greedy Left-Most Matching Algorithm

Definition 8 (Greedy Left-Most Matching Algorithm). The greedy left-most matching algorithm for pattern \(p\) and input word \(w\) is defined as the left-to-right traversal of the NFA match automata resulting from \(p\) for input word \(w\). Sink states of transitions are kept in the order as they appear in the set of partial derivatives. Duplicate states are removed, only the left-most state is kept.

Precisely, transitions operate on configurations

\[\{p_1, \ldots, p_n\} \Gamma^p_1 \ldots \Gamma^p_n\]

For transitions

\[p \xrightarrow{(l, f)} p_1, p_1 \xrightarrow{...} p_n\]

where \(\{p_1, f_1, \ldots, (p_n, f_m)\} = \emptyset|p|l\) and configuration

\[\{p_1, \ldots, p_n, \ldots, p_n\} \Gamma^p_1 \ldots \Gamma^p_n \Gamma^o_1 \ldots \Gamma^o_n\]

we obtain the (intermediate) derivation step

\[\{p_1, \ldots, p_n\} \Gamma^p_1 \ldots \Gamma^p_n \Gamma^o_1 \ldots \Gamma^o_n\]

Of course, we need to reduce the remaining \(p_i\)’s w.r.t. letter \(l\) to obtain a complete derivation step.

In a configuration, the resulting set of states is simplified by removing duplicate states where we keep the left-most state. That is, \(P_1 \cup \{p\} \cup P_2 \cup \{p\} \cup P_3\) is simplified to \(P_1 \cup \{p\} \cup P_2 \cup P_3\) until there are no duplicates.

We elaborate on a few aspects of the algorithm.

To guarantee the greedy left-most matching order, it is important that transitions are executed as in the (left-to-right) order of partial derivatives \(\{p_1, f_1, \ldots, (p_m, f_m)\}\) as computed by \(p|p|l\).

Our algorithm does not require to fully annotate the pattern. The reason is that the construction of pattern partial derivatives strictly breaks apart the pattern structure. Consider the base case \((x : r)\) from Figure 11

\[\{x : r\} \setminus_p l = \{(x : r', x \mapsto l) | r' \in r|p|l\}\]

For \(p = (x : (A + AB), y : (B + e))\), we obtain (after simplification)

\[p|p|l = \{(y : (B + e), x \mapsto A), ((x : B)(y : (B + e), y \mapsto B)\}

This guarantees that we compute the greedy left-most match \(\{x : A, y : B\}\) for input \(AB\).

The set of NFA states is a constant, bound by the size of \(p\). Hence, the running time of the algorithm is linear in the size of the input. In summary, we can state the following results. By construction, the algorithm follows the greedy left-to-right matching policy.
The greedy left-most matching algorithm implements the greedy left-most matching policy and its running time is linear in the size of the input. The space required to store the final and all intermediate match environments is a constant, bound by the size of the pattern.

5.4 NFA Comparison

In Figure 12 we show the size of the resulting match automata for Thompson, Glushkov and partial derivative NFAs. Our focus is on the specific automata construction method without any post-simplification step. As can be seen, the partial derivative NFA is ‘smaller’ compared to the other NFAs. This is confirmed through [1], [2] and [21]. Thompson NFAs often have the largest sets of states and transitions due to the \(\epsilon \) transitions. According to [21], for large alphabet sets, partial derivative NFAs are about half the sizes of Glushkov NFAs in terms of states and transitions.

In the last example, we use \(\Sigma \) to denote the union of all ASCII characters. In this particular case, the Glushkov NFA construction scales the worst. This is due to the fact that each character creates a state in the NFA [15]. Due to the Kleene star, there are at least 256*256 transitions. The Thompson NFA does not scale well in terms of states, either. Our implementation de-sugars \((A + B + C)\) to \((A + (B + C))\) and therefore more states will be generated. Of course, the size of the Thompson NFA could be significantly reduced if we avoid this de-sugaring step.

We have built reference implementations of greedy left-most matching for all three NFA approaches. Basic measurements show that the matcher based on partial derivatives is generally much faster. These are ‘non-optimized’ reference implementations. Hence, the result is not necessarily conclusive but is an indication that matching with partial derivatives is promising. We provide conclusive evidence in the later Section 7.

6. Extensions for Real world Applications

So far, we have presented the core of a system to support regular expression pattern matching. Regular expression patterns used in the real world applications require some extensions. For instance, patterns with sub-match binding is expressed implicitly in the regular expression pattern via groups, and the concatenation requires no constructor. In the following section, we use \(p \) (in text mode) to denote a pattern in the real world application syntax, and \(p \) (in math mode) to denote a pattern in our internal syntax defined earlier. The syntax of \(p \) will be explained by examples in the following paragraphs.

6.1 Group Matching

In many mainstream languages that support regular expression pattern matchings, such as Perl, python, awk and sed, programmers are allowed to use “group operator”, \((\cdot) \) to mark a sub-pattern from the input pattern, and the sub strings matched by the sub pattern can be retrieved by making reference to integer index of the group. For instance, \((a^*\cdot b^*)\) is equivalent to pattern \(x : a^* \) \(y : b^* \) in our notation. Sending the input “aab” to \((a^*\cdot b^*)\), yields \([aa^*, b^*]\), where the first element in the list refers to the binding of the first group \((a^*)\) and the second element refers to the binding of the second group \((b^*)\). Group matching is supported in our implementation by translating the groups into patterns with pattern variables.

6.2 Character Classes

Character class is another extension we consider. For instance, \([0-9]\) denotes a single numeric character. \([A-Za-z]\) denotes one alphabet character. We translate these two types of character classes into regular expressions via the choice operation \(+ \). There are some other type of character classes that require more work to support. Character classes can be negated. \([0-9]\) denotes any non-numeric character. Another related extension that is available in real world application is the dot symbol \(. \), which can be used to represent any character. There are two different approaches to support the dot symbol and negative character classes. One approach is to translate the dot symbol into a union of all ASCII characters and to translate negative character classes to unions of all ASCII characters excluding those characters mentioned in the negated character classes. The other approach is to introduce these two notations \(. \) and \([71-99]\) to our internal regular expression pattern language, such that

\[\{ \cdot \} = \{ \} \]

\[[71-99] = \{ \} \]

In our implementation, we adopt the latter because the resulting regular expressions are smaller in size hence it is more efficient.

6.3 Non-Greedy Match

The symbol ? in the pattern \((a^*?)\) \((a^*)\) indicates that the first sub pattern \(a^*\) is matched non-greedily, i.e. it matches with the shortest possible prefix, as long as the suffix can be consumed by the sub pattern that follows.

Non-greedy matching can be neatly handled in our implementation. To obtain a non-greedy match for a pair pattern \((p_1, p_2)\) where \(p_1\) is not greedy, we simply reorder the two partial derivatives coming from \((p_1, p_2)\). We extend the pair pattern case of \(\{ . \}\) in Figure 11 as follows,

\[
(p_1, p_2) \{ . \} = \begin{cases}
(p_2 \cup \{ (p_1, f), f \mid f \in p_1 \}) & \text{if } \epsilon \in L(p_1, p_2) \\
(p_1 \cup p_2) \{ . \} & \text{if } \epsilon \in L(p_1, p_2) \\
(p_1, p_2) \{ . \} & \text{otherwise}
\end{cases}
\]

Extending our pattern language with the greediness symbol is straight-forward and the definition of greedy(\(\cdot \)) := \(p \rightarrow \text{false} \) is omitted for brevity.

6.4 Anchored and Unanchored Match

Given a pattern \(p \), \("p$s" \) denotes an anchored regular expression pattern. The match is successful only if the input string is fully matched by \(p \). A pattern which is not starting with \("\) and not ending with \($\) is considered unanchored. An unanchored pattern can match with any sub-string of the given input, under some matching policy. Our implementation clearly supports anchored matches. To support unanchored match, we could rewrite the unanchored pattern \(p \) into an equivalent anchored form, \("\) \(\ast \?p \ast\$\), and proceed with anchored match.

6.5 Repetition Pattern

Repetition patterns can be viewed as the syntactic sugar of sequence patterns with Kleene star. \(p[n] \) repeats the pattern \(p \) for \(n \) times; \(p[n, m] \) repeats the pattern \(p \) for at least \(n \) times and at maximum \(m \) times. It is obvious that the repetition pattern can be “compiled” away using the composition of sequence and Kleene star operators.

Other extensions such as unicode encoding and back references are not considered in this work.

7. Experimental Results

We measure the performance of our regular expression sub-matching approach based on partial derivatives. We have built an optimized implementation of greedy left-to-right matching. Our
implementation is entirely written in Haskell and we employ several (fairly standard) optimizations such as hashing of states etc.

The benchmarkings were conducted on a Mac OSX 10.6.8 with 2.4GHz Core 2 Duo and 8GB RAM. The benchmark programs were compiled using GHC 7.0.4. We divide the benchmarkings into two groups. In the first group, we compare our implementation with other native Haskell implementation. In the second group, we challenge the C implementations.

The complete set of the benchmark results can be located via http://code.google.com/p/xhaskell-library/ in which the broader scope of comparison is considered.

7.1 Contenders and Benchmark Examples

The contenders are:

- **PD-GLR** our greedy left-to-right matching implementation.
- **Weighted** [7], the native Haskell implementation of regular expression matching. Weighted’s sub matching is fairly limited because it only supports one variable pattern, i.e. \(x :: \star (x :: \star) \). Nevertheless, we included Weighted in the comparison. The implementation is accessible via the Haskell package Text.Regex.Weighted;
- **TDFA**, the native Haskell implementation of [11]. It is accessible via the library Text.Regex.TDFA [19].
- **RE2**, the google library re2;
- **PCRE**, the pcre library, accessible via the Haskell wrapper Text.Regex.PCRE [17];
- **PCRE**, the light-weight wrapper to the pcre library, accessible via Text.Regex.PCRE.Light [18].

The benchmark sets consist of examples adopted from [6], and some others being extracted from the real world applications that we encountered. For the up-coming performance measurements, we select the following representative examples:

1. A simple pattern which involves no choice, in which our implementation does not take any advantage;
2. A contrived pattern which builds up a lot of choices, in which our algorithm out-performs PCRE’s and is on par with RE2’s;
3. Two real world application examples in which we assess the practicality of our implementation.

7.2 Competing with Native Haskell Implementations

In Figure 13, Figure 14 and Figure 15, we compare the run-time performance of PD-GLR, TDFA and Weighted. As a convention in all figures, the x-axis measures the size of the input; the y-axis measures the time taken to complete the match, measured in seconds.

Figure 13 shows the results of matching the pattern `^.*$` against some randomly generated text. PD-GLR’s performance is on par

\[^{\text{Other implementations, e.g. Text.Regex.Parsec, Text.Regex.DFA and Text.Regex.TRE couldn’t be compiled at the time when this paper was written. Text.RegexPR didn’t scale at all for any of our examples. Therefore, we exclude these packages from our benchmark comparison.}}\]
In this section, we challenge ourselves by benchmarking against
performs marginally better than TDFA in these examples.
out-performs Weighted thanks to the smaller automata. PD-G LR
input. The charts show that in case of complex patterns, PD-G LR
"Mountain View, CA 90410" matches with the pattern. Note that
extracts the US addresses from the input. For instance, the address
"http://www.mysite.com/?foo=123&bar=567" matches with the
above pattern.
the x-axis in Figure 15 measures the number of addresses in the
input. The charts show that in case of complex patterns, PD-GLR
performs marginally better than TDFA in these examples.

7.3 Competing with C Implementation and Wrappers
In this section, we challenge ourselves by benchmarking against
some implementation directly using C or wrapping around the C
PCRE library.

In Figure 16, we use a wild card pattern (.*) to match with
some randomly generated text. PD-GLR’s performance is slightly
worse than PCRE and PCREL. RE2 is taking the lead by a factor
of ten. Profiling PD-GLR for this example shows that most time is
spent in de-composing the input ByteString [4], which is of course
less efficient than the C counterparts which have direct access to
the character array.

In Figure 17, we re-apply the example from Figure 15 to PCRE
and RE2. It shows that PD-GLR and RE2 perform slightly better
than PCRE. The difference is about 1 second, due to the ByteString
decomposition. Note that the run-time statistics of PCREL is omitted
in Figure 17. In this particular example, PCREL performs the
worst. The difference is by hundreds of seconds compared to oth-
ers.

In the last example in Figure 18, we match a string with n
“a”s against the pattern (a?)|^(.*)a[^a-z]*$\). The sub-pattern (a?) will not match
PCRE does not scale well because of back-tracking. When
the input n reaches 30, the program exits with a segmentation
fault. PCRE shares the same behavior as PCRE since they share
the same C backend library. The non-backtracking algorithms PD-
GLR and RE2 show the similar performance. What is omitted
in Figure 18 is that, when n > 30, PD-GLR is performing non-
linearly. Profiling reveals that the overhead is arising from the com-
putation phase. We plan to address this issue in the future work.

7.4 Performance Measurement Summary
Our measurements show that ours is the fastest native Haskell
implementation of regular expression sub-matching. Compared to
state-of-the art C-based implementations RE2 and PCRE, our im-
plementation has a fairly competitive performance.

8. Related Work and Discussion
Our use of derivatives and partial derivatives for regular expres-
sion matching is inspired by our own prior work [14, 22] where
we derive up-cast and down-cast coercions out of a proof sys-
tem describing regular expression containment based on partial
derivatives. The goal of this line of work is to integrate a XDuce-
style language [9] into a variant of Haskell [23]. The focus of the
present work is on regular expression sub-matching and some spe-
cific matching policies such as greedy and POSIX.

Regular expression derivatives have recently attracted ag ain
some attention. The work in [16] employs derivatives for scanning,
i.e. matching a word against a regular expression. To the best of
our knowledge, we are the first to transfer the concept of deriva-
tives and partial derivatives to the regular expression sub-matching
setting.

Prior work relies on mostly Thompson NFAs [24] for the
construction of the matching automata. For example, Frisch and
Cardelli [8] introduce a greedy matching algorithm. They first run
the input from right-to-left to prune the search space. A similar approach is pursued in some earlier work by Kearns [10].

Laurikari [12, 13] devises a POSIX matching automata and introduces the idea of tagged transitions. A tag effectively corresponds to our incremental matching functions which are computed as part of partial derivative operation \(\partial \).

Kuklewicz has implemented Laurikari style tagged NFAs in Haskell. He [11] discusses various optimization techniques to bound the space for matching histories which are necessary in case of (forward) left-to-right POSIX matching.

Cox [6] reports on a high-performance implementation of regular expression matching and also gives a comprehensive account of the history of regular expression match implementations. We refer to [6] and the references therein for further details. He introduces the idea of right-to-left scanning of the input for POSIX matching. As said, all prior work on efficient regular expression matching relies mostly on Thompson NFAs or variants of it. Partial derivatives are a form of NFA with no \(\epsilon \)-transitions. For a pattern of size \(n \), the partial derivative NFA has \(O(n) \) states and \(O(n^2) \) transitions. Thompson NFAs have \(O(n) \) states as well but \(O(n) \) transitions because of \(\epsilon \)-transitions.

The work in [8] considers \(\epsilon \)-transitions as problematic for the construction of the matching automata. Laurikari [12, 13] therefore first removes \(\epsilon \)-transitions whereas Cox [6] builds the \(\epsilon \)-closure. Cox algorithm has a better theoretical complexity in the range of \(O(n \times m) \) where \(m \) is the input language. In each of the \(m \) steps, we must consider \(O(n) \) transitions. With partial derivatives we cannot do better than \(O(n^2 \times m) \) because there are \(O(n^2) \) transitions to consider. However, as shown in [2] the number of partial derivatives states is often smaller than the number of states obtained via other NFA constructions. Our performance comparisons indicate that partial derivatives are competitive.

Fischer, Huch and Wilke [7] discuss a rewriting-based approach to support regular expressions based on Glushkov NFAs. They build the matching automata incrementally during the actual matching whereas we build a classic matching automata based on partial derivative NFAs. There exists a close connection between Glushkov and partial derivative NFAs, e.g. see [1]. However, as our benchmark results show it appears that matching via partial derivative NFAs is superior. As mentioned earlier, the Fischer et. al. approach is fairly limited when it comes to sub-matching. Three matching policies are discussed (leftmost, leftlong and longest). Longest seems closest to POSIX and greedy left-most but not formal investigations on this topic are conducted in [7].

9. Conclusion

Our work shows that regular expression sub-matching can be elegant using derivatives and partial derivatives. The Haskell implementation of our partial derivative matching algorithm is the fastest among all native in Haskell implementations we are aware of. Our performance results show that we are competitive compared to state-of-the-art C-based implementations such as PCRE and RE2. Our extensive set of benchmarks show that our approach yields competitive performance results.

Acknowledgments

We thank Christopher Kuklewicz for useful discussions about his TDFA system, Christian Urban for his comments and Russ Cox for pointing us to some related work. We are grateful to some ICFP'10, ICFP'11 and PPDP'12 reviewers for their helpful comments on previous versions of this paper.

References

[22] M. Sulzmann and K. Z. M. Lu. Xhaskell - adding regular expression
