Semantically Weighted Similarity Analysis for XML-based Content Components

Jan Oevermann
jan.oevermann@dfki.de

Christoph Lüth
christoph.lueth@dfki.de

DocEng 2018, Halifax, 29.08.2018
Technical Documentation

- XML-based content components
 - Self-contained building blocks e.g. chapter-sized
- Reuse, translation, aggregation, delivery
- Semantic XML information models
- Large databases of content components
- Product variants -> content variants

<descriptive nodeid="PI-70006536">
 <heading>Fuel Gas Requirements</heading>
 <descriptive_body>
 <paragraph>This Section defines […]
 <table>
 <row>
 <entry>
 <paragraph>Permissible range</paragraph>
 </entry>
 <entry>
 <paragraph>5°C to 120°C</paragraph>
 </entry>
 </row>
 </table>
 </descriptive_body>
</descriptive>
Motivation

• Similar or duplicate content components
 • Document-based migration
 • Uncontrolled reuse / copying
 • Not checking / finding existing content

• Why is this bad?
 • Information retrieval / content delivery
 • high recall, low precision
 • Higher translation cost for variants
 • Time spent (re)writing existing content
Requirements & Implications

• Large amounts of content components
 • Computational efficient algorithm
• Simple similarity measure
 • Reliable against semantically similar differences
• (Non-)Detection of intentional variants
 • Weighting of semantically relevant text properties
• Quality assurance
 • UI for checking flagged relations
Architecture
Similarity analysis

- Similarity relations are symmetrical
- Total number of all relations (C) can grow rapidly

$$|C| = \frac{n \times (n - 1)}{2}$$

- Cosine similarity (s) for comparing vectors with extracted features

$$s = \frac{\vec{a} \cdot \vec{b}}{||\vec{a}|| \times ||\vec{b}||}$$

- Threshold for similarity measure to reduce total number of relations to check (r)
Semantic similarity

A

This device is designed to work with a voltage of 110 V only.

B

This device is designed to work with a voltage of 220 V only.

C

This device works with a voltage of 110 V only.
Semantic weighting

- Extracted text from weighted elements treated separately
- Weighting artificially increases feature count by quantifier (q)
- Influences similarity in predictable ways
- Does not add to the complexity of the similarity analysis
Implementation

- Implemented in JavaScript
- All processing is done client-side (browser), heavy calculations in own threads (web worker)
- Tested efficiency on standard hardware

| Set | units (n) | comb. ($|C|$) | words/ unit | total t [s] | $\frac{t}{|C|}$ [ms] |
|-----|-------------|--------------|-------------|--------------|-------------------|
| A | 166 | 13,695 | 455.8 | 0.7 | 0.052 |
| B | 1,600 | 1,279,200 | 178.0 | 243.7 | 0.191 |
| C | 2,501 | 3,126,250 | 353.4 | 650.7 | 0.208 |
| D | 4,101 | 8,407,050 | 278.9 | 2,878.0 | 0.342 |
Workbench-like user interface

Similarity Analysis

- Duplicates: Similar combinations
 - 219 in 13,695 total combinations

- Time: Elapsed time
 - 0.7s for 166 total objects

Clumped similarities
Cluster of similar or duplicate objects.

Details
Tabular view of similarity values

<table>
<thead>
<tr>
<th>#</th>
<th>Object ID</th>
<th>Similarity</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>59</td>
<td>Pi-7016789</td>
<td>98.61%</td>
<td>Compare</td>
</tr>
<tr>
<td>126</td>
<td>Pi-70163367</td>
<td>98.88%</td>
<td>Compare</td>
</tr>
</tbody>
</table>

Comparison view

- Components: Pi-70305962 vs Pi-70148806
- Title: Calcium
- Similarity: 96.2948%

Calcium: Calcium can lead to hard and tenacious deposits, such as anhydrite (CaSO4 4CaSO 4), which are neither self-spalling when the gas turbine is shut down, nor readily removable by water washing of the turbine. These deposits will degrade performance and may also abrade turbine coatings.
Similarity Analysis

Duplicates
Similar combinations
219
in 13,695 total combinations

Similarities

Time
Elapsed time
0.7s
for 166 total objects

Clustered similarities
Cluster of similar or duplicate objects.
Details

Tabular view of similarity values

<table>
<thead>
<tr>
<th>#</th>
<th>Object ID</th>
<th>Object ID</th>
<th>Similarity</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>59</td>
<td>PI-70006797</td>
<td>PI-70116789</td>
<td>98.61%</td>
<td>Compare</td>
</tr>
<tr>
<td>126</td>
<td>PI-70163367</td>
<td>PI-70116789</td>
<td>98.88%</td>
<td>Compare</td>
</tr>
</tbody>
</table>

Comparison view

Components: **PI-70305962** ↔ **PI-70148806**

Title: **Calcium**

Similarity: **96.1948%**

Differences: +1 -1

Calcium can lead to hard and tenacious deposits, such as anhydrite (\(\text{CaSO}_4\) | \(\text{CaSO}_4\) 4), which are neither self-spalling when the gas turbine is shut down, nor readily removable by water washing of the turbine. These deposits will degrade performance and may also abrade turbine coatings.
Outlook & Conclusion

• RegEx or NER to in preprocessing to add XML tags
• Alternative similarity measures
• Integration with CCMS, give recommendations
• Research dependency to information model semanticity

• Simple method which can improve similarity results
• Real-world relevance through customer project with Siemens Energy (TecDoc Department)
Contact

Jan Oevermann
jan.oevermann@dfki.de
www.janoevermann.de

Code & Demo
github.com/j-oe/semsim
semsim.fastclass.de